Neutrino Physics at Fermilab

University of Rochester February 4, 1998

Kevin McFarland Massachusetts Institute of Technology

Outline

- 1. Neutrinos? At Particle Accelerators? Why?
- 2. Neutrino as Probe
- 3. Neutrino as Neutrino
- 4. Future Neutrino Endeavors

Neutrinos

are spin-1/2 particles, with no electric charge, no strong interactions and little or no mass

Where do Neutrinos Fit in the Standard Model?

Leptons: $\begin{pmatrix} \nu_e \\ e \end{pmatrix} \begin{pmatrix} \nu_\mu \\ \mu \end{pmatrix} \begin{pmatrix} \nu_\tau \\ \tau \end{pmatrix}$ Quarks: $\begin{pmatrix} u \\ d \end{pmatrix} \begin{pmatrix} c \\ s \end{pmatrix} \begin{pmatrix} t \\ b \end{pmatrix}$

ForceCarrierParticipantsStronggluonsquarks, gluonsElectromagneticphotoncharged particlesWeak W^{\pm}, Z^0 all, including neutrinos!

- The Charge-Carrying Weak force connects members within doublets above.
- In the quark sector, it can connect *different* families of doublets, but this has not been observed in the lepton sector.

The Weak force is "weak" because it is mediated by a massive particle

$$\frac{d\sigma}{dq^2} = \frac{2}{\pi} \left(\frac{g_W^2}{q^2 + M_W^2} \right)^2$$

$$q_{\text{max}}^2 = 2m_e E_\nu$$

$$\Rightarrow \sigma \propto E_\nu$$

And
$$\sigma/E_{\nu}$$
 is tiny!

Total interaction cross-sections for 100 GeV particles onto a target are:

- $\sim 10^{-40} {\rm cm}^2$ for neutrino-electron scattering
- $\sim 10^{-36} {
 m cm}^2$ for neutrino-nucleon scattering
- cf: $\sim 10^{-25}$ cm² cross-section for pp scattering

A 100 GeV neutrino has a mean free path in steel of 3×10^9 meters (10 light seconds)

If you're going to observe neutrino interactions...
... you need a lot of neutrinos and a lot of detector

Some Highlights from the History of the Neutrino

1930 Pauli Postulates $n \rightarrow p + e^- + ???$ ν existence Is Energy Conserved? 1953 $\overline{\nu} + p \rightarrow n + e^+$ ν Interactions Observed Nobel 1995 Reines & Cowan $\nu_{\mu} + N \rightarrow \mu^{-} + X$ 1962 ν_{μ} Observed Lederman, Schwartz, Nobel 1988 Steinberger 1973

1973 Neutral Current ν $\nu + N \rightarrow \nu + X$ Interactions Observed
Gargamelle

1989 3 light ν families! $Z \to \nu \overline{\nu}$ LEP Experiments

Neutrino Physics is not a field whose rewards come quickly or easily...

Where are neutrinos found in nature?

... anywhere weak interactions can produce them

- Relic neutrinos from early universe ($\sim 300/\text{cc}, 0.2 \text{ meV}$)
- Radioactive decays, fission reactors $(n \to pe^-\overline{\nu}_e)$ or fusion reactors $(pp \to de^+\nu_e)$ ($\sim 1 \mathrm{MeV}$)

• Products of high-energy interactions

To make a "neutrino beam" at an accelerator...

- 1. Take the highest energy particles you can make
- 2. Hit a target and produce unstable, weakly-decaying particles
- 3. Allow those particles to decay into neutrinos

Basic Requirements for a Detector to Observe Neutrino-Nucleon Scattering:

- Transverse size comparable to the beam size
- Sufficient length to ensure a reasonable number of neutrino interactions
- Active detector material throughout target

The Heisenberg Insolvency Principle for Neutrino Targets?

 $(Mass) \times (Resolution) \lesssim constant($$$)$

Different choices in detector design...
... lead to different physics capabilities

1 Maximize Mass and live with a coarsely instrumented detector.

Example: CCFR Neutrino Detector

- 690 tons, detectors spaced every 4 inches of steel
- High statistics, but only particle that can be identified is the muon.

- 2 Small, but fully-active fine-grained detector. Example: CHORUS Neutrino Detector
 - 1 ton emulsion target
 - Can identify short (> 20 μ m) tracks from unstable τ leptons.

CCFR (Columbia-Chicago-Fermilab-Rochester)

Target

• Measures energy of hadronic system

$$\frac{\sigma_E}{E} \approx \frac{0.9}{\sqrt{E \text{ (GeV)}}}$$

• Tracks final state muon

$$\sigma_{\theta} \sim \left(0.3 + \frac{70 \text{ GeV}}{p}\right)$$

Toroid

- Magnetic field bends muon
- Curvature measures muon momentum

$$\frac{\sigma_p}{p} \approx 0.11$$

Studies of QCD with Neutrinos

Quantum Chromodynamics is...

... the theory of Strong Interactions

In QCD, Quark-Quark Interactions are mediated by the Gluon

Quarks bound by gluons

What a proton looks like...

...depends on your probe

Higher momentum transferred (Q^2)

means small wavelength (DeBroglie, $\lambda \sim \frac{1}{\sqrt{Q^2}}$)

and higher resolution.

What Does DIS Probe?

In a frame where the nucleon is highly relativistic,

Nucleon is

Flat from length contraction Probe interacts once

Frozen from time dilation

Quark is carrying a fixed fraction of nucleon momentum, x

Neutrinos interact weakly with quarks (not gluons) So, νN DIS is like taking a "snapshot" of the quarks in the nucleon

So by taking the ensemble of all snapshots...
... can we reconstruct the movie?

νN DIS is measured by counting charged-current interactions:

Reconstruct: muon angle, muon momentum and total energy

$$Q^2 = 4E_{\nu}E_{\mu}\sin^2(\theta_{\mu}/2) = 4$$
-momentum transfer $x = Q^2/2M(E_{\nu} - E_{\mu}) = \text{quark fractional momentum}$ $y = 1 - E_{\mu}/E_{\nu} = \text{inelasticity}$

Charged-Current Weak Interaction selects spin states:

Interaction Total Spin
$$\frac{d\sigma}{dy}$$
 ν - q : or $\overline{\nu}$ - \overline{q} 0 1 $\overline{\nu}$ - q : or ν - \overline{q} 1 $(1-y)^2$ $2(1-y)=1+\cos^2\theta^*$

Can use y information to find numbers of quarks and anti-quarks with a given x for each Q^2 .

QCD has some "interesting" properties...

- QCD coupling is denoted by α_s
- QCD is a non-Abelian gauge theory \Rightarrow

3-Gluon Vertex

gluons

• QCD coupling "runs" with scale of interaction

- QCD is "asymptotically free" at small distances (high Q^2), and strong at large distances (low Q^2)
 - \Rightarrow No free quarks!
 - \Rightarrow QCD is "weak" inside proton... pQCD!

What Does QCD Do for Deeply-Inelastic Scattering?

pQCD cannot predict momentum distributions of quarks...

... but it can predict how they would change with Q^2

If QCD does describe proton dynamics...

(the movie of the proton)

 $... then \ scale \ (Q^2) \ effects \ are \ our \ movie \ review$

Two QCD Processes which modify the Structure Functions of Deeply-Inelastic Scattering

Quark Bremsstrahlung

Quarks carry less momentum Affects all quarks

Gluon Splitting

Makes quark-antiquark pairs at low momentum No change in valence quarks

(W.G. Seligman et al., hep-ex/9701017, to appear in Phys. Rev. Lett.)

CCFR GLS Sum Rule

(J. Yu et al., Moriond '97)

Impressive verification of QCD over

$$1 < Q^2 < 10^4 \text{ GeV}^2$$

Electroweak Unification and νN DIS

Unification of Weak and Electromagnetic Forces

 W^{\pm}, Z^0

Want to make a single high-energy theory

Weak Isospin set by W^{\pm} coupling, G_F Electric charge set by $\alpha_{\rm em}$ Z^0 properties set by θ_W

- G_F , known to 20 ppm
- $\alpha_{\rm em}$,known to 45 ppb (but only to 700 ppm at $Q^2 \sim M_Z^2$)
- ullet Single "High Energy" Parameter: M_Z , known to 24 ppm
 - But $\sin^2 \theta_W$ or M_W could also be used...

OK, that's it! So why am I telling you this?

Because there are complications!

Processes like...

... will affect measurements!

(even at low energy, $Q^2 \ll m_t^2$)

These diagrams involving quark loops have an effect on weak interactions that is proportional to m_q^2

- The large effect from large **top quark** mass allowed its mass to be "measured" *before* it was ever observed
- Similarly, the as yet undiscovered Higgs boson can be "weighed" (an effect $\propto \log m_{\rm Higgs}/m_Z$)
- But an unexpected heavy particle or other new physics could have a large effect also...

The Electroweak Standard Model is Tested to Highest Precision in...

- Z^0 Bosons from e^+e^- collisions at LEP and SLC
 - $-m_Z$, Γ_Z , asymmetries in Z^0 decay
- W^{\pm} Bosons in $p\overline{p}$ collisions at Tevatron, LEP II
 - $-m_W, \Gamma_W$
- ν-Nucleon Deeply Inelastic Scattering! (FNAL, CERN)
- Atomic Parity Violation

Why test in so many processes?

1. Testing

in a wide range of processes and momentum scales ensures universality of the electroweak theory

- 2. Measurements probe loop corrections from heavy particles differently
- 3. May find new physics in unexpected discrepancies

"Putting a box around it, I'm afraid, does not make it a unified theory."

How Does $\nu - N$ DIS Measure $\sin^2 \theta_W$?

Fraction of neutrino interactions producing a muon is related to $\sin^2 \theta_W$.

To measure $\sin^2 \theta_W$ in νN DIS...

... need to identify only muons

Results from CCFR Experiment

New CCFR Preliminary $\sin^2 \theta_W = 0.2236 \pm 0.0041$ (K.S. McFarland *et al.*, submitted to Phys. Rev. **D**)

Convert CCFR and other results to M_W and compare

- Excellent agreement in a wide variety of measurements
- No evidence for new physics
- Upcoming experiments will improve these measurements
 - Current FNAL Experiment NuTeV will improve νN error by a factor of 2

Search for Neutrino Oscillations

Charged-Current Weak Interactions (W^{\pm}) of quarks,

$$\begin{pmatrix} u \\ d \end{pmatrix} \begin{pmatrix} c \\ s \end{pmatrix} \begin{pmatrix} t \\ b \end{pmatrix}$$

can change quarks from one doublet to another.

But Weak Interactions of leptons can't!

$$\left(egin{array}{c}
u_e \\ e \end{array}
ight) \left(egin{array}{c}
u_\mu \\ \mu \end{array}
ight) \left(egin{array}{c}
u_ au \\ au \end{array}
ight)$$

Why Not?

If there were an interaction which coupled between doublets in the lepton sector...

...Neutrino Flavor Oscillations could be an observable consequence.

Analogy: Coupled Pendula

...and it oscillates

Neutrino oscillations require:

- 1. Unequal (non-zero!) neutrino masses, Δm^2
- 2. Mixing of flavors in a single mass state, α

Transition probability from an initially pure flavor state:

$$P(\nu_1 \to \nu_2) = \sin^2 2\alpha_{12} \sin^2 \left(\frac{1.27\Delta m^2 L}{E}\right)$$

 Δm^2 is the $(m_a^2-m_b^2)$ for the two mass eigenstates in ${
m eV}^2$

E is the neutrino energy in GeV, and

L is the length between the point of creation and the point of detection in km.

CCFR QT ν Beam at Fermilab creates ν_{μ} from $\pi, K \to \mu \nu_{\mu}$ decays.

- Pure flavor state at point of creation
- $\bullet < E > \sim 100 \text{ GeV}, L \sim 1 \text{ km}$
- Most sensitive at $\Delta m^2 \sim 100 \text{ eV}^2$
- Typical for accelerator experiments...

Why Expect to Find ν Oscillations?

- 1. Cosmology would like massive dark matter to close the universe ($\Sigma m_{\nu} \sim 50 \text{ eV}$)
- 2. ONE accelerator experiment, LSND, has shown evidence for $\overline{\nu}_{\mu} \to \overline{\nu}_{e}$ oscillations ($\Delta m^{2} \gtrsim 10^{-1} \text{ eV}^{2}$)

 Consensus of field: contradicts other experiments(?), needs verification (!)
- 3. Ratio of ν_e to ν_μ in neutrinos from cosmic ray showers in atmosphere is too high $(\Delta m^2 \sim 10^{-2} \text{ eV}^2)$
- 4. Fewer solar neutrinos seen than predicted $(\Delta m^2 \sim 10^{-5} \text{ eV}^2)$

The first of these ranges of Δm^2 has been probed by many accelerator experiments...

...but to look at low Δm^2 requires a long neutrino beam!

(oscillation probability $\propto \frac{L\Delta m^2}{E}$)

Long-baseline ν Beam

truly *massive* detector needed for rate

Accelerator-based ν oscillation experiments usually look for appearance in a fine-grained detector

Search for τ , e appearance in a ν_{μ} beam

Too much \$\$\$ to buy a detector capable of...

- observing τ , which decays quickly ($\sim 10^{-13} \text{ sec}$)
- \bullet observing e, which quickly loses energy
- only μ , which can penetrate material easily and is long-lived, can be found inside hadronic shower

CCFR Technique

- Count fraction of events with an observed μ
- Interactions of ν_{τ} and ν_{e} will rarely produce muons
- Muon Neutrino oscillations will lower fraction of events with a μ

Can infer neutrino oscillations...

... by only identifying one type of lepton!

CCFR Data agrees with expectation

⇒ Limits on Oscillations

(K.S. McFarland et al., Phys. Rev. Lett. 75, 3993

A. Romosan *et al.*, Phys. Rev. Lett. **78**, 2912)

The MINOS Experiment

One ν Beam, two large coarse-grained massive detectors, each similar to CCFR detector:

NEAR: $\approx 1km$ from proton target

FAR: 730km from proton target in the

Soudan Mine in Minnesota

Only 3 events/ton/year

 \Rightarrow 10 Kton detector

The ν beamline View From Above:

Side View:

MINOS Sensitivity for two years of Running:

The FAR Future

? Very Large Hadron Collider, $\sim 40~\text{TeV} \times 40~\text{TeV}$ pp? $\rightarrow \text{Next Linear Collider}$, $\sim 1~\text{TeV} \times 1~\text{TeV}$ $e^+e^ \rightarrow \text{First M}_{uon}$ Collider, $\sim 2~\text{TeV} \times 2~\text{TeV}$ $\mu^+\mu^-$

Why a Muon Collider?

- e^+e^- , $\mu^+\mu^-$ collisions can transfer full \sqrt{s} to the final state
- As in proton colliders, muon collider storage rings possible at these energies $(m_p > m_{\mu} \gg m_e)$ (at TeV energies, e^+e^- only possible in single pass linear collider)

Complication: $\tau_{\mu} \approx 2\mu \sec$

- Extremely bright muon source needed; Acceleration must occur quickly
- $\bullet \mu \rightarrow e\nu\nu$
 - Final state electrons heat/irradiate magnets, shower in collider detector.
 - $-\nu$... make a beam!

ν Beams at a μ Collider

Storage or Collider Ring

- Well-collimated ν beam, simple production
- Extremely high rates (10³ times MINOS beam) (ν beam can be a radiation hazard!)

Shielding $\frac{\nu_{\mu} \bar{\nu}_{e}}{e} \longrightarrow \frac{\mu}{e}$ detector

CCFR/NuTeV: 600 m downstream of Linear Accelerator

Not necessarily the best experiment...

Very Long Baseline ν Oscillations

$E_{\mu} \; (\mathrm{GeV})$	L (km)	$M_{ m detector}$ (KTon)	$\nu_e N \to e^- X/\text{year}$
1.5	1	1	5×10^{6}
20	732	10	2×10^{5}
20	9990	10	1×10^{3}
(S. Geer, hep-ph/9712290)			

Small Targets? In a ν Experiment?

Even a parasitic experiment at a 250 GeV muon collider would get a few $\times 10^5~\nu$ interactions/yr in a g/cm² target!

- Light Nuclear Targets: Do quarks know they're inside a heavy/light nucleus?
- H_2 vs D_2 : Is u(x) in proton = d(x) in the neutron
- Polarized Nuclear Targets: Do Sea Quarks know the spin of the nucleus?

Solid Butanol $(CH_3(CH_2)_3OH)$ target (SMC)

Why use ν 's on Light Targets?

- Charged Lepton Scattering has looked at Nuclear Dependences, but only ν scattering gives you clean up and down separation ($\cos \theta^*$ distributions)
- $\sigma^{\nu} \pm \sigma^{\overline{\nu}}$ gives valence and sea separation
- Extremely clean signal for scattering off of strange quarks- must be from the sea!

Conclusions

Neutrino Physics is Alive and Well at Fermilab!

CCFR/NuTeV experiments probe three fundamental forces

- Measurements of QCD
- Unification of Electromagnetic and Weak
- NuTeV (May 1996-September 1997) data soon!

Neutrino Oscillation searches underway

- CCFR/NuTeV search with massive, coarse detector at high Δ_m^2
- MINOS will pioneer long-baseline frontier

Muon Collider, future renaissance in neutrino physics?

- Orders of magnitude above current intensities will allow new capabilities in detectors
- Long-baseline neutrino oscillations to terrestrial limits?

Physics worth waiting for!